Ethylene Oligomerization to Low Carbon Olefins by a Zirconium Complex Incorporating 8-Quinolinolato Ligands at a Low Al/Zr Ratio

Ming Xing QIAN, Mei WANG*, Hui WANG, Ren HE

State Key Laboratory of Fine Chemicals, Dalian University of Technology Zhongshan Road 158-46, Dalian 116012

Abstract: Bis(8-quinolinolato)zirconium dichloride $(Ox)_2ZrCl_2$ ($Ox^- = 8$ -quinolinolato) was found active for ethylene oligomerization with a high selectivity of 84~94% to C₄~C₁₀ olefins at 70~100°C under the pressure of 1.8 MPa using Et₂AlCl as a co-catalyst (Al/Zr = 60).

Keywords: Ethylene oligomerization, low carbon olefins, zirconium complex, 8-hydroxyquinoline.

The synthesis and chemistry of early transition metal complexes featuring N,N-, O,Oand N,O-bidentate ligands has gained a lot of attention in virtue of their catalytic applications, especially for olefin polymerization and oligomerization¹. The continuous increase in the commercial demands for $C_4 \sim C_8$ linear α -olefins, which are promising as co-monomers of linear low-density polyethylenes (LLDPE), prompts us to focus on the investigation of the high performance homogeneous catalysts for ethylene oligome-rization to low carbon linear α -olefins. Here we report the catalytic property of a zirconium complex incorporating 8-quinolinolato (Ox⁻) chelate ligands for ethylene oligomerization in combination with Et₂AlCl as a co-catalyst. Although it has been reported that some titanium and zirconium complexes containing N,O-bidentate ligands are efficient olefin polymerization precatalysts^{1,2}, the catalytic performance of zirconium complexes having 8-quinolinolato ancillary ligands for ethylene oligomerization is little studied.

Bis(8-quinolinolato)zirconium dichloride $(Ox)_2ZrCl_2$ **1** was prepared from zirco-nium(IV) chloride and 2 equiv of LiOx in diethyl ether according to the literature³. The influences of reaction temperature, aging temperature and reaction time on the catalytic activity and product distribution of complex **1** employing Et₂AlCl as a co-catalyst for ethylene oligomerization were studied. The selected results are summarized in **Table 1**. The productivity was calculated to be 108 kg oligomer per mol Zr per h at the optimal conditions (entry 6). The results of entry 1 ~ 4 showed that both catalytic activity and selectivity of complex **1** were affected by the aging temperature. Entry 2 with the aging temperature at 70°C gave the best result of the first 4 entries. Ethylene oligomerization carried out at the aging temperature of 70 ~ 80°C afforded higher selectivity to C₄₋₁₀ olefins in comparison with the results from entry 1 and 4, while

the selectivity to C_{4-10} linear α -olefins decreased with the increase of aging temperature. When the reaction

Entry	Temp.	Aging temp.	Reaction time	Activity ^b	C4-10 olefins ^c	C ₄₋₁₀ linear
	°C	°C	h	$(\times 10^{-4})$	%	α -olefins ^c %
1	90	60	2	5.6	85	88
2	90	70	2	8.2	90	87
3	90	80	2	5.0	93	84
4	90	90	2	4.6	87	74
5	70	70	2	7.0	94	89
6	100	70	2	10.8	84	81
7	110	70	2	7.8	75	78
8	90	70	1	11.2	95	94
9	90	70	3	6.5	85	68
10	90	70	4	5.5	77	64

 Table 1
 Selected results of ethylene oligomerization catalyzed by complex 1^a

a) Reaction conditions: zirconium complex 0.025 mmol; cocatalyst Et₂AlCl;

Al/Zr(molar ratio) = 60; aging time 0.5 h; $P(C_2H_4) = 1.8$ MPa; chlorobenzene 30 mL. b) Activity: g oligomers/mol(Zr)·h.

c) Determined by GC and GC-MS analysis with n-heptane as an internal standard.

temperature was raised from 70 ~ 100°C, the productivity was enhanced apparently (entry 2, 5 and 6), meanwhile, obvious drops in the selectivities to C_{4-10} olefins and to C_{4-10} linear α -olefins were observed for ethylene oligomerization. But further enhancement of reaction temperature resulted in a sharp decrease in the productivity (entry 7). It appears that the active species generated from the system of complex $1/Et_2$ AlCl is less thermostable than that from a zirconocene complex/ethylaluminoxane (EAO) where the highest activity was observed at much higher reaction temperature of $150 \sim 200^{\circ}$ C in our previous studies⁴. As the reaction time was extended from 1 to 4 hours, the catalytic activity of complex 1 went down from 112 to 55 kg oligomer per mol Zr per h (entry 2 and $8 \sim 10$). In the meantime the selectivity decreased from 95 to 77% for C_{4-10} olefins and from 94 to 64% for C_{4-10} linear α -olefins.

In conclusion, bis(8-quinolinolato)zirconium dichloride complex 1 is an effective precatalyst for ethylene oligomerization. The catalytic system of 1/Et₂AlCl displayed moderate productivity with a high selectivity to low carbon linear olefins.

Acknowledgments

We gratefully acknowledge the National Natural Science Foundation of China (Grant no. 20173006) for financial support of this research.

References

- 1. (a) T. Tsukahara, D. C. Swenson, R. F. Jordan, Organometallics, 1997, 16, 3303;
- (b) S. Matsui, M. Mitani, J. Saito et al., J. Am. Chem. Soc., 2001, 123, 6847.
- X. X. Xu, D. Zhou, G. H. Xie, Acta Polymerica Sinica (Chinese), 1997, 6, 746. 2
- 3.
- X. Bei, D. C. Swenson, R. F. Jordan, *Organometalics*, **1997**, *16*, 3282. (a) M. Wang, Y. Shen, M. Qian *et al.*, *J. Organomet. Chem.*, **2000**, 599, 143; (b) M. Wang, R. Li, M. Qian et al., J. Mol. Catal., 2000, 160, 337.

Received 10 December, 2001